Open Dataset
Data Structure ?
0.01M
Data Structure ?
*The above analysis is the result extracted and analyzed by the system, and the specific actual data shall prevail.
README.md
**出典:
このデータセットは、Siegler, R. S. (1976)によって報告された心理学実験をモデル化するために生成されました。
Three Aspects of Cognitive Development. Cognitive Psychology, 8, 481 - 520.
**
提供者:
Tim Hume (hume '@' ics.uci.edu)
**データセット情報:**
このデータセットは、心理学実験の結果をモデル化するために生成されました。各事例は、天秤が右に傾く、左に傾く、または平衡状態にあると分類されます。属性は、左の重さ、左の距離、右の重さ、および右の距離です。クラスを見つける正しい方法は、(左の距離 * 左の重さ)と(右の距離 * 右の重さ)のうち大きい方です。両者が等しい場合、平衡状態です。
**属性情報:
1. クラス名: 3 (L, B, R)
2. 左の重さ: 5 (1, 2, 3, 4, 5)
3. 左の距離: 5 (1, 2, 3, 4, 5)
4. 右の重さ: 5 (1, 2, 3, 4, 5)
5. 右の距離: 5 (1, 2, 3, 4, 5)**
関連論文:
Klahr, D., & Siegler, R.S. (1978). The Representation of Children's Knowledge. In H. W. Reese & L. P. Lipsitt (Eds.), Advances in Child Development and Behavior, pp. 61 - 116. New York: Academic Press
[ウェブリンク]
Langley,P. (1987). A General Theory of Discrimination Learning. In D. Klahr, P. Langley, & R. Neches (Eds.), Production System Models of Learning and Development, pp. 99 - 161. Cambridge, MA: MIT Press
[ウェブリンク]
Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard University Press
[ウェブリンク]
McClelland, J.L. (1988). Parallel Distibuted Processing: Implications for Cognition and Development. Technical Report AIP - 47, Department of Psychology, Carnegie - Mellon University
[ウェブリンク]
Shultz, T., Mareschal, D., & Schmidt, W. (1994). Modeling Cognitive Development on Balance Scale Phenomena. Machine Learning, Vol. 16, pp. 59 - 88.
[ウェブリンク]
このデータセットを引用する論文1:
Zhi - Hua Zhou and Yuan Jiang and Shifu Chen. Extracting symbolic rules from trained neural network ensembles. AI Commun, 16. 2003.
Jianbin Tan and David L. Dowe. MML Inference of Decision Graphs with Multi - way Joins and Dynamic Attributes. Australian Conference on Artificial Intelligence. 2003.
Peter Sykacek and Stephen J. Roberts. Adaptive Classification by Variational Kalman Filtering. NIPS. 2002.
Remco R. Bouckaert. Accuracy bounds for ensembles under 0 { 1 loss. Xtal Mountain Information Technology & Computer Science Department, University of Waikato. 2002.
Nir Friedman and Moisés Goldszmidt and Thomas J. Lee. Bayesian Network Classification with Continuous Attributes: Getting the Best of Both Discretization and Parametric Fitting. ICML. 1998.
Hirotaka Inoue and Hiroyuki Narihisa. Experiments with an Ensemble Self - Generating Neural Network. Okayama University of Science.
Alexander K. Seewald. Meta - Learning for Stacked Classification. Austrian Research Institute for Artificial Intelligence.
Alexander K. Seewald. Dissertation Towards Understanding Stacking Studies of a General Ensemble Learning Scheme ausgefuhrt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Naturwissenschaften.
****
元の出典 : https://archive.ics.uci.edu/ml/datasets/Balance+Scale
×
The dataset is currently being organized and other channels have been prepared for you. Please use them
The dataset is currently being organized and other channels have been prepared for you. Please use them
Note: Some data is currently being processed and cannot be directly downloaded. We kindly ask for your understanding and support.
No content available at the moment
No content available at the moment
- Share your thoughts
Go share your ideas~~
ALL
Welcome to exchange and share
Your sharing can help others better utilize data.
Data usage instructions: h1>
I. Data Source and Display Explanation:
- 1. The data originates from internet data collection or provided by service providers, and this platform offers users the ability to view and browse datasets.
- 2. This platform serves only as a basic information display for datasets, including but not limited to image, text, video, and audio file types.
- 3. Basic dataset information comes from the original data source or the information provided by the data provider. If there are discrepancies in the dataset description, please refer to the original data source or service provider's address.
II. Ownership Explanation:
- 1. All datasets on this site are copyrighted by their original publishers or data providers.
III. Data Reposting Explanation:
- 1. If you need to repost data from this site, please retain the original data source URL and related copyright notices.
IV. Infringement and Handling Explanation:
- 1. If any data on this site involves infringement, please contact us promptly, and we will arrange for the data to be taken offline.
- 1. The data originates from internet data collection or provided by service providers, and this platform offers users the ability to view and browse datasets.
- 2. This platform serves only as a basic information display for datasets, including but not limited to image, text, video, and audio file types.
- 3. Basic dataset information comes from the original data source or the information provided by the data provider. If there are discrepancies in the dataset description, please refer to the original data source or service provider's address.
- 1. All datasets on this site are copyrighted by their original publishers or data providers.
- 1. If you need to repost data from this site, please retain the original data source URL and related copyright notices.
- 1. If any data on this site involves infringement, please contact us promptly, and we will arrange for the data to be taken offline.