Open Dataset
Data Structure ?
336.32M
Data Structure ?
*The above analysis is the result extracted and analyzed by the system, and the specific actual data shall prevail.
README.md
内容
COCOセグメンテーション形式に変換されたデータセットのコレクション。
前処理:
いくつかの画像のサイズを変更しました
多くのアノテーションがある一部の画像をメモリに収まるようにタイル状に分割しました
輪郭のみが利用可能な場合、マスクを抽出しました
これは輪郭を見つけることによって行われます
フォルダ階層
DATASETS = { 'nuclei_stage1_train': { IM_DIR: _DATA_DIR + '/Nuclei/stage_1_train', ANN_FN: _DATA_DIR + '/Nuclei/annotations/stage1_train.json' }, 'nuclei_stage_1_local_train_split': { IM_DIR: _DATA_DIR + '/Nuclei/stage_1_train', ANN_FN: _DATA_DIR + '/Nuclei/annotations/stage_1_local_train_split.json' }, 'nuclei_stage_1_local_val_split': { IM_DIR: _DATA_DIR + '/Nuclei/stage_1_train', ANN_FN: _DATA_DIR + '/Nuclei/annotations/stage_1_local_val_split.json' }, 'nuclei_stage_1_test': { IM_DIR: _DATA_DIR + '/Nuclei/stage_1_test', ANN_FN: _DATA_DIR + '/Nuclei/annotations/stage_1_test.json' }, 'nuclei_stage_2_test': { IM_DIR: _DATA_DIR + '/Nuclei/stage_2_test', ANN_FN: _DATA_DIR + '/Nuclei/annotations/stage_2_test.json' }, 'cluster_nuclei': { IM_DIR: _DATA_DIR + '/Nuclei/cluster_nuclei', ANN_FN: _DATA_DIR + '/Nuclei/annotations/cluster_nuclei.json' }, 'BBBC007': { IM_DIR: _DATA_DIR + '/Nuclei/BBBC007', ANN_FN: _DATA_DIR + '/Nuclei/annotations/BBBC007.json' }, 'BBBC006': { IM_DIR: _DATA_DIR + '/Nuclei/BBBC006', ANN_FN: _DATA_DIR + '/Nuclei/annotations/BBBC006.json' }, 'BBBC018': { IM_DIR: _DATA_DIR + '/Nuclei/BBBC018', ANN_FN: _DATA_DIR + '/Nuclei/annotations/BBBC018.json' }, 'BBBC020': { IM_DIR: _DATA_DIR + '/Nuclei/BBBC020', ANN_FN: _DATA_DIR + '/Nuclei/annotations/BBBC020.json' }, 'nucleisegmentationbenchmark': { IM_DIR: _DATA_DIR + '/Nuclei/nucleisegmentationbenchmark', ANN_FN: _DATA_DIR + '/Nuclei/annotations/nucleisegmentationbenchmark.json' }, '2009_ISBI_2DNuclei': { IM_DIR: _DATA_DIR + '/Nuclei/2009_ISBI_2DNuclei', ANN_FN: _DATA_DIR + '/Nuclei/annotations/2009_ISBI_2DNuclei.json' }, 'nuclei_partial_annotations': { IM_DIR: _DATA_DIR + '/Nuclei/nuclei_partial_annotations', ANN_FN: _DATA_DIR + '/Nuclei/annotations/nuclei_partial_annotations.json' }, 'TNBC_NucleiSegmentation': { IM_DIR: _DATA_DIR + '/Nuclei/TNBC_NucleiSegmentation', ANN_FN: _DATA_DIR + '/Nuclei/annotations/TNBC_NucleiSegmentation.json' }, }
使用例:
import json from pathlib import Path import numpy as np from PIL import Image from pycocotools import mask as mask_util ROOT_DIR = Path('/media/gangadhar/DataSSD1TB/ROOT_DATA_DIR/') DATASET_WORKING_DIR = ROOT_DIR / 'Nuclei' annotations_file = DATASET_WORKING_DIR / 'annotations/stage1_train.json' COCO = json.load(open(annotations_file.as_posix())) image_metadata = COCO['images'][0] print image_metadata # {'file_name': '4ca5081854df7bbcaa4934fcf34318f82733a0f8c05b942c2265eea75419d62f.jpg', # 'height': 256, # 'id': 0, # 'nuclei_class': 'purple_purple_320_256_sparce', # 'width': 320} def get_masks(im_metadata): image_annotations = [] for annotation in COCO['annotations']: if annotation['image_id'] == im_metadata['id']: image_annotations.append(annotation) segments = [annotation['segmentation'] for annotation in image_annotations] masks = mask_util.decode(segments) return masks masks = get_masks(image_metadata) print masks.shape # (256, 320, 37) def show(i): i = np.asarray(i, np.float) m,M = i.min(), i.max() I = np.asarray((i - m) / (M - m + 0.000001) * 255, np.uint8) Image.fromarray(I).show() show(np.sum(masks, -1)) # これはすべてのマスクが含まれた画像を表示するはずです
×
The dataset is currently being organized and other channels have been prepared for you. Please use them
The dataset is currently being organized and other channels have been prepared for you. Please use them
Note: Some data is currently being processed and cannot be directly downloaded. We kindly ask for your understanding and support.
No content available at the moment
No content available at the moment
- Share your thoughts
Go share your ideas~~
ALL
Welcome to exchange and share
Your sharing can help others better utilize data.
Data usage instructions: h1>
I. Data Source and Display Explanation:
- 1. The data originates from internet data collection or provided by service providers, and this platform offers users the ability to view and browse datasets.
- 2. This platform serves only as a basic information display for datasets, including but not limited to image, text, video, and audio file types.
- 3. Basic dataset information comes from the original data source or the information provided by the data provider. If there are discrepancies in the dataset description, please refer to the original data source or service provider's address.
II. Ownership Explanation:
- 1. All datasets on this site are copyrighted by their original publishers or data providers.
III. Data Reposting Explanation:
- 1. If you need to repost data from this site, please retain the original data source URL and related copyright notices.
IV. Infringement and Handling Explanation:
- 1. If any data on this site involves infringement, please contact us promptly, and we will arrange for the data to be taken offline.
- 1. The data originates from internet data collection or provided by service providers, and this platform offers users the ability to view and browse datasets.
- 2. This platform serves only as a basic information display for datasets, including but not limited to image, text, video, and audio file types.
- 3. Basic dataset information comes from the original data source or the information provided by the data provider. If there are discrepancies in the dataset description, please refer to the original data source or service provider's address.
- 1. All datasets on this site are copyrighted by their original publishers or data providers.
- 1. If you need to repost data from this site, please retain the original data source URL and related copyright notices.
- 1. If any data on this site involves infringement, please contact us promptly, and we will arrange for the data to be taken offline.