Select Language

Open Dataset

FAT2019 多プリプロセッシングエンカプセレーション

FAT2019 多プリプロセッシングエンカプセレーション

8861.68M
510 hits
0 likes
1 downloads
0 discuss
Earth and Nature,Standardized Testing,Audio Data Classification

Data Structure ? 8861.68M

    Data Structure ?

    *The above analysis is the result extracted and analyzed by the system, and the specific actual data shall prevail.

    README.md

    FAT2019用の前処理済みデータセット [Freesound Audio Tagging 2019](https://www.kaggle.com/c/freesound-audio-tagging-2019)用の複数種類の処理済み音声データセット。 前処理の種類 このデータセットには、全時間範囲を使用した3種類の前処理が含まれています。 - 対数メルスケールスペクトログラム 128xN - 対数メルスケールΔΔ位相スペクトログラム 128xN - MFCC 64xN また、トレーニング用の精選データとノイジーデータのCSVから無音行を除外したデータも含まれています。 設定 class AugmentationConfig: padding_scale = 1. whitenoise = True whitenoise_level = 1e-3 # 0.~1. pitchshift = True pitchshift_steps = 2. # steps (12/oct) class PreproConfig: gen_mels = True gen_phase = True gen_mfcc = True gen_augmentation = True sr = 44100 duration = 2. # secs n_out = 128 n_mfcc = 64 # 一般的には13 n_mels = 128 n_fft = n_mels * 20 fmin = 20 fmax = sr // 2 phase_root = (1. / 2.) hop_len = int(sr * duration // n_out) sample_size = int(sr * duration) padding_size = int(sample_size * AugmentationConfig.padding_scale) 前処理カーネル 準備中...
    ×

    The dataset is currently being organized and other channels have been prepared for you. Please use them

    The dataset is currently being organized and other channels have been prepared for you. Please use them

    Note: Some data is currently being processed and cannot be directly downloaded. We kindly ask for your understanding and support.
    No content available at the moment
    No content available at the moment
    • Share your thoughts
    Go share your ideas~~

    ALL

      Welcome to exchange and share
      Your sharing can help others better utilize data.
    Points:0 Go earn points?
    • 510
    • 1
    • 0
    • collect
    • Share